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Abstract. The proton conductivity and the mobility arising from motions of the ionic and bonded defects,
in hydrogen-bonded molecular systems are investigated by means of the quantum mechanical method.
Our two component model goes beyond the usual classical harmonic interaction by inclusion of a quartic
interaction potential between the nearest-neighbor protons. Among the rich variety of soliton patterns
obtained in this model, we focus our attention to compact kink (kinkon) solutions to calculate analytically,
the mobility of the kinkon-antikinkon pair and the specific electrical-conductivity of the protons transfer
in the hydrogen-bonded systems under an externally applied electrical-field through the dynamic equation
of the kinkon-antikinkon pair. For ice, the mobility and the electrical conductivity of the proton transfer
obtained are about 5.307 × 10−7 m2 V−1 s−1 and 6.11 × 10−4 Ω−1 m−1, respectively. The results obtained
are in qualitative agreement with experimental data.

PACS. 62.30.+d Mechanical and elastic waves; Vibrations – 63.20.-e Phonons in crystal lattices –
05.45.Yv Solitons – 63.20.Ry Anharmonic lattice modes

1 Introduction

One-dimensional chain of hydrogen bonds has attracted a
lot of attention since it provides a simple model for many
problems in physics, chemistry and biology [1–21]. One
problem which has received much theoretical interest is
the proton transport that takes place through the hydro-
gen bonds. This interest grew out of the complete lack of
success in attempts to built models that can explain si-
multaneously the ionic and Bjerrum formation and prop-
agation using well-known soliton properties [16,22,23].

Early studies of properties of the one-dimensional
atomic [18,20] and diatomic chains of protons and heavy
ions led to the proposal, which is further discussed in refer-
ence [12], that the proton dynamics is strongly influenced
by anharmonic lattice vibrations. For example, it has been
shown that for certain choices of the boundary conditions
and conditions requiring the presence of linear and nonlin-
ear dispersion terms, the protons exhibit a richer dynam-
ics that cannot be produced with only linear couplings.
In addition, the continuum limit of this model [12] shows
soliton patterns of compact support such as peak, drop,
bell, cups, shock, kink, bubble and loop structures. In the
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framework of this approach, it has also been shown that
when anharmonic interactions of phonons are taken into
account, the width and energy of soliton patterns are in
qualitative agreement with experimental data [12,18,20].
In these studies, however, attention has been focused to
the classical behavior of these excitations without dis-
cussing the relevance of quantum effects in the structure
of solitons with compact support. Of course, a more re-
alistic treatment of such defect configurations and their
properties should also take into consideration quantum
effects. Up to now, quantum effects of protons transfer
in quasi-one-dimensional hydrogen-bonded systems have
been reported [8,24–30]. However, to our knowledge, only
the work by Kevrekidis et al. [31] studied the quantization
of solitons with compact support, and provides a motiva-
tion for extra theoretical and experimental effort. Explicit
expressions for both the mobility and the conductivity of
the kinkon-antikinkon pair in hydrogen-bonded molecular
systems using the quantum-mechanical method are of in-
terest and we evaluate these physical parameters for ice
crystal.

In this paper, we are going to focus on molecu-
lar systems which are long periodic chains of hydro-
gen bonds forming channels for the proton transport.
In particular, we present theoretical calculations which
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concern the mobility of the kinkon-antikinkon pair and
the specific electrical-conductivity of the protons transfer
in the hydrogen-bonded chains under an externally ap-
plied electrical field through the dynamic equation of the
kinkon-antikinkon pair solutions. The paper is organized
as follows. In Section 2, the quantum model Hamiltonian
is introduced and the corresponding equations of motion
are derived. In Section 3, the mathematical analysis of
the model equations and their kink solutions with compact
support are considered. We also compute the mobility and
the conductivity of the kinkon-antikinkon pair solutions
in the presence of an externally applied electrical-field. In
Section 4, we compare the obtained results with the ex-
perimental data and finally, the last section contains a
summary and conclusions.

2 The model and equations of motion

Due to the fact that we here consider the molecular crys-
tals to be at a finite temperature, and which can be in con-
tact with a thermal reservoir at temperature of T �= 0 K,
it is necessary to take account of the anharmonic vibra-
tions of the molecular chains in the systems when com-
pared with the case where we do not take into account
the temperature effect [12,39,40]. Therefore, the total one-
dimensional hydrogen-bonded Hamiltonian describing the
collective excitation state resulting from the structural de-
formation and localized fluctuation in such a case should
be represented as [12,39]:

H = Hp + Ho + Hint, (1)

where the Hamiltonian of the proton sublattice is:

Hp =
∑

n

[
1

2m
p2

n + V (un) +
1
2
mC2

0 (un+1 − un)2
]

+
∑

n

[
1
4
mCa (un+1 − un)4

]
. (2)

In a real system, the proton-proton interaction near the
equilibrium positions is expected to be very weak. There-
fore the value of (mC2

0 ) must be small. However, when
a proton moves far away from one equilibrium position
and approaches the other one, the electronic structure
of the oxygen atom changes dramatically. In order to re-
flect this situation, we introduce an additional anharmonic
interaction, which, in our calculation, is expressed by a
fourth-order term. This nonlinear short-range potential is
assumed to be polynomial in order that its form can corre-
spond to the small amplitude expansion of a more realistic
potential such as a Toda, Lennard-Jones or Morse lattice
potential [40]. C0 is the characteristic velocity and Ca the
anharmonic coupling parameter between neighboring pro-
tons. un denotes the displacement of the nth proton with
respect to the center of the heavy-ion pair, pn = mdun

dt
is the momentum, and the term V (un) is the symmetric
double-well substrate potential:

V (un) = V0Vsub (un) , (3)

where

Vsub (un) =
(

1 − u2
n

u2
0

)2

. (4)

V0 denotes the potential barrier, and 2u0 [the two minima
(±u0, 0) correspond to the degenerate ground states of
the chain] is the distance between the two minima of the
double-well potential.

For the motion of the heavy ion, we assume an har-
monic oscillator with low frequency acoustic-vibration, on
account of the large mass associated to a large number
of atoms or atomic groups. Thus, the Hamiltonian of the
heavy-ion sublattice is [8,12,14]:

Ho =
∑

n

[
1

2M
P 2

n +
1
2
Mv2

0 (yn+1 − yn)2
]

(5)

where yn and Pn = M dyn

dt are the displacement of the
heavy ion from its equilibrium position and its conjugate
momentum, respectively. The last term of equation (5) de-
scribes an harmonic coupling between neighboring heavy
ions pairs.

The last contribution to the total Hamiltonian H arises
from the dynamical interaction between the two sublat-
tices and describes the modulation of the double well po-
tential caused by the variation of the distance between the
heavy ions that surround the proton. Its physical mean-
ing is the lowering of the potential barrier due to the
oxygen displacements. This energy can be measured ex-
perimentally or estimated from approximated theoretical
expressions [12,14,32,33]. The shape that we use takes into
account the interactions between the relative movements
of atoms in two chains. It can also describe interactions
between donors and acceptors [13]. In the discrete lines
of Josephson transmission, it describes the inductive cou-
pling [14]. The interacting Hamiltonian is given by:

Hint =
∑

n

χ (yn+1 − yn)
(
u2

0 − u2
n

)
, (6)

where χ measures the strength of the coupling between
the two interacting sublattices and determines the am-
plitude of the distortion in the heavy ion sublattice. We
also justified this form of the interacting Hamiltonian by
the fact that, the interaction between the oscillators and
molecular lattice exists because of the local fluctuation
and deformation of structure in this system.

As it is well-known [8], the vibration frequency of the
proton is quite high relative to the heavy ion due to its
small mass and strong interaction. Thus, we generalize
our model into quantum-mechanical case to study the
quantum-mechanical properties. Naturally, we make the
transformation:

un =
√

�

2mω0

(
an + a+

n

)
, (7a)

pn =

√
�mω0

2
(−i)

(
an − a+

n

)
, (7b)

where a+
n and an are the creation and annihilation oper-

ator of the proton, respectively and i =
√−1. The total
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Hamiltonian (1) becomes:

H =
∑

n

{
�ω0a

+
n an +

�ω0

4

[(
an+1 + a+

n+1

)2

−2
(
an+1 + a+

n+1

) (
an + a+

n

)]

+V0

[
1 − �

mω0u2
0

(
an + a+

n

)2 +
�

2

4m2ω2
0u

4
0

(
an + a+

n

)4
]

+
1
16

Ca�
2

mω2
0

[(
an+1 + a+

n+1

)− (an + a+
n

)]4

+
1
2
M

(
dyn

dt

)2

+
Mv2

0

2
(yn+1 + yn)2

+χ (yn+1 + yn)u2
0

− �

2mω0
χ (yn+1 + yn)

(
an + a+

n

)2
}

. (8)

The creation and annihilation operators of particles act
on the lattice sites and they can be obtained in the
Heisenberg picture using equation (8):

i�
∂

∂t
an = [an, H ] (9a)

i�
∂

∂t
a+

n =
[
a+

n , H
]
. (9b)

In order to solve the system (9a) and (9b), and as far the
solitary excitations induced by the collective excitations
for the protons and phonons, arising from the localized
fluctuation of the protons and deformation of structure
of the heavy ionic sublattice are concerned, a physically
acceptable candidate for quantum states should be rep-
resented by the following quasi-coherent state [8]: from
equation (8), we see that the motion of the proton is a non-
linear problem. In such a system, features of the proton
are changed when compared with the bare proton. Thus
the collective excitations for the protons and phonon, aris-
ing from the localized fluctuation of the protons and de-
formation of structure of the heavy ionic sublattice, have
coherence. The wave function describing the collective ex-
citations in the systems should be represented by the fol-
lowing quasi-coherent state:

|Φ(t)〉 = |ϕ(t)〉 |β(t)〉 (10)

with

|ϕ(t)〉 =
1
η

(
1 +

∑

n

ϕn (t) a+
n

)
|0〉pr , (11a)

|β(t)〉 = e
1

i�

[∑
n

[θn(t)Pn−πn(t)yn]

]

|0〉ph , (11b)

where |0〉pr and |0〉ph are the ground states of the pro-
ton and the phonon, respectively. The terms θn (t) =
〈Φ |yn| Φ〉, and πn (t) = 〈Φ |Pn| Φ〉 are three sets of un-
known functions. η is a normalization constant and is
taken equal to unity for the convenience of calculation.
The present wave function of the proton, |ϕ(t)〉 is not an

excitation state of a single particle, but rather a coherent
state, or more accurately, a quasi-coherent state.

|ϕ〉 ∼ 1
η
e

[∑
n

ϕn(t)a+
n

]

|0〉pr

=
1
η
e

[∑
n
[ϕn(t)a+

n−ϕ∗
n(t)an]

]

|0〉pr . (12)

Equation(12) is a standard coherent state. We retain only
the two terms of the expansion of a standard coherent
state, which mathematically can be justified in the case
of small ϕn (t), which can be viewed as an effective trun-
cation of a standard coherent state. Therefore we refer to
|ϕ(t)〉 in |Φ(t)〉 as quasi-coherent state. However, it is not
an eigenstate of a number operator N̂ =

∑
n

a+
n an, since

N̂ |ϕ(t)〉 =

(
∑

n

ϕ(t)na+
n

)
|0〉pr = |ϕ(t)〉 − |0〉pr . (13)

Therefore, the |ϕ(t)〉 represents a coherent superposition
of the proton state with one quantum and the ground state
of the proton. However, in this state the number of quanta
are determinate, instead of commensurable, likely in the
standard coherent state. To find out how many quanta
this state contains, we have to compute the expectation
value of the number operator N̂ in this state and sum over
the sites. The average number of quanta for this state is

N = 〈ϕ(t)
∣∣∣N̂
∣∣∣ ϕ(t)〉

=
∑

n

〈ϕ(t)
∣∣a+

n an

∣∣ ϕ(t)〉

=
∑

n

|ϕn (t)|2 = 1 (14)

where we utilize the following relation
∑

n

|ϕn (t)|2 = 1. (15)

Therefore, the above wavefunction of the proton is a quasi-
coherent state containing one quantum. Thus, |Φ〉 not only
exhibits coherent features of collective excitations of the
protons and phonons caused by the nonlinear interaction
generated by proton-phonon interaction, but can make the
numbers of protons maintain conservation in the Hamilto-
nian equation (8). The expectation value of the coordinate
and the conjugate momentum are given by

θn (t) = 〈Φ(t) |yn| Φ(t)〉 (16a)
πn (t) = 〈Φ(t) |Pn| Φ(t)〉 . (16b)

By considering the formulas of the expectation values of
the Heisenberg equations operators θn and Pn, in the
state |Φ(t)〉 which contains coherent features of collective
excitations of the protons and phonons caused by the non-
linear interaction generated by the proton-phonon inter-
action and makes the numbers of protons maintain con-
servation in the Hamiltonian equation (8), the equations
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of motion satisfied by θn and ϕn are written as

M
d2θn

dt2
= Mv2

0 (θn+1 + θn−1 − 2θn)

− 2�

mω0
χ
(
|ϕn|2 − |ϕn−1|2

)
, (17)

−d2ϕn

dt2
= 4ω2

0ϕn − 2ω2
0 (ϕn+1 + ϕn−1) − 8V0

mu2
0

ϕn

−4χ

m
(θn+1 − θn)ϕn +

16V0�

m2ω2
0u

2
0

|ϕn|2 ϕn

+
4Ca�

mω0

[
(ϕn − ϕn−1)

3 − (ϕn+1 − ϕn)3
]
.

(18)

The system of equations (17) and (18) constitutes cou-
pled nonlinear differential-difference equations, of which,
exact analytical solutions are unobtainable. These equa-
tions, however, can be treated analytically when we are in-
terested in smooth waves or waves with long wavelengths
compared with the lattice constant. We adopt a contin-
uum approximation (na = x), in which the discrete fields
ϕn(t) and θn(t) are substituted by the corresponding con-
tinuous fields ϕ(x, t) and θ(x, t). Thus, equations (17)
and (18) can be represented by

∂2ϕ

∂t2
= 2a2ω2

0

(
∂2ϕ

∂x2

)
+

12a4Ca�

mω0

∂2ϕ

∂x2

(
∂ϕ

∂x

)2

+
4aχ

m
ϕ

(
∂θ

∂x

)
− 16V0�

m2ω0u4
0

ϕ3 +
8V0

mu2
0

ϕ (19)

∂2θ

∂t2
= a2v2

0

(
∂2θ

dx2

)
− 4a�χ

Mmω0
ϕ

(
∂ϕ

∂x

)
(20)

where a is the lattice constant.

3 Kinkon excitations

In order to find, travelling waves at a constant velocity
v, the partial differential equations (19) and (20) can be
reduced to ordinary differential equations in the dimen-
sionless variable s by the substitution: s = x−vt

a . Thus,
equation (20) is integrated once to give

dθ

ds
=

2χ

Mv2
0 (1 − V 2

2 )

(
�

mω0

)
ϕ2 + K1. (21)

Substituting equation (21) into equation (19) leads to

(
V 2

1 −1
) d2ϕ

ds2
= Cnl

(
dϕ

ds

)2
d2ϕ

ds2
− g |ϕ|2 ϕ + εϕ, (22)

where V1 = v
a
√

2ω0
and V2 = v

av0
are the scaled soliton

velocities of protons and heavy-ions, respectively. K1 is
an integral constant. Cnl is the parameter that controls
the strength of the nonlinear coupling and is related to
the anharmonic coupling coefficient Ca by the relation

Cnl = 6Ca

ω2
0

(
�

mω0

)
. χ1 = χ

mC2
0

and χ2 = χ
Mv2

0
are the pa-

rameters that control the strength of the coupling between
the two interacting sublattices. g and ε are the shape pa-
rameters of the effective potentials which are defined by

g =
[

16V0

mu4
0C

2
0

− 8χ1χ2

(1 − V 2
2 )

](
�

mω0

)
(23a)

ε =
8V0

mC2
0u2

0

− 4Aχ1 (23b)

respectively, with A = −K1.
The first integral of equation (22) is

z4 − 2z2
0z

2 = α
(
ϕ2 − ϕ2

0

)2 − ε2

gCnl
+ K2 (24)

where z = dϕ
ds , z0 =

√
V 2
1 −1

Cnl
, α = g

Cnl
, ϕ0 =

√
ε
g and K2,

the constant of integration determined from the bound-
ary conditions [12]. Equation (24) admits different kinds
of excitations [12] among which, are kink excitations with
compact support (kinkon). These kinkons are the localized
structure of permanent profile and which explains the dy-
namics and transfer of proton in the hydrogen bonds sys-
tems and satisfy the classical boundary conditions [12,20]

dϕ

ds
−→ 0, ϕ −→ ϕ0, as s −→ ±∞

dθ

ds
−→ 0, as s −→ ±∞, (25)

under the condition

0 =
[

16V0

mu4
0C

2
0

− 8χ1χ2

(1 − V 2
2 )

] (
V 2

1 − 1
)2

+
12Ca

C2
0

[
8V0

mC2
0u2

0

− 4Aχ1

]2
(26)

where A = −K1 = 2χ

Mv2
0(1−V 2

2 )

(
�

mω0

)
ϕ2

0.

Within these conditions, the implicit solution is
given by:

±
√

2z0

ϕ0
(sltn − s0) = arcsin

(
l√
2

ϕ

ϕ0

)

+ ln

⎡

⎣t

√

1 − 1
2

(
ϕ

ϕ0

)2

+
n√
2

ϕ

ϕ0

⎤

⎦

(27)

where ln is the Neperian logarithm, l = ±1, t = ±1, n =
±1, these symbols simply indicate the sign of each denoted
term on the right-hand side of equations (27), and s0 is
defined by the chosen initial condition.

For the boundary condition

ϕ → −ϕ0 while s → −∞ and,

ϕ → −ϕ0 while s → ∞, (28)
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Fig. 1. Representation of the field of soliton solutions ϕ (for
the proton) as a function of the position s, corresponding to
the waveforms of kinkon structure according to equations (27)
for s0 = 0, z0 = 2, and ϕ0 = 1.

kinkons are given by
√

2z0

ϕ0
s+++ if

√
2z0

ϕ0
s ∈ ]−∞, 0] , and

−
√

2z0

ϕ0
s−+− if

√
2z0

ϕ0
s ∈ [0,∞[ (29)

and plotted in Figure 1.
Next, we evaluate the dynamical quantities such as the

energy and momentum of the kinkon. The total energy
which is transferred by a kinkon is expressed as

E = Ep + Eo + Eint. (30)

To find this total kinkon energy, we can use the
Hamiltonian Hp, Ho, and Hint in the continuum limit,
respectively. Then, we obtain

E =
�v2

aω0V 2
1

∫ +∞

−∞

[
1
2

(
∂ϕ

∂t

)2

+
1
2

(
∂ϕ

∂x

)2

− ε

4a2

(
1 − ϕ2

ϕ2
0

)2

+
a2Cnl

4

(
∂ϕ

∂x

)4
]

dx, (31)

whose integration gives

E =
�v2ϕ0

aω0V 2
1

[
π
√

2
8
(
1 + v2

) ε√
(1 − V 2

1 ) g

− 1
32

(√
2 (6 + π)

√
g +

√
2 (π − 2)ε

√
ε
)√

(1 − V 2
1 )
]

.

(32)

The kinkon describes the motion of the proton over the
barrier of the double well potential in intrabond by a
mechanism of jumping from one molecule to another (see
Fig. 2). Thus the ionic defect occurred in the system. This
proton kinkon are accompanied by the compression or

Fig. 2. Schematic representation of a soliton (an extended
ionic defect) with both components. (a): a kinkon and, (b): an
antikinkon in the proton sublattice and a localized compression
of the heavy-ion sublattice.

rarefaction of the heavy ion sublattice around the pro-
tonic defect. Theses solitons with the plus sign in equa-
tion (27) represents a localized reduction in the proton
density (expansion of the proton sublattice), arising from
the motion of the kinkon soliton which amounts to cre-
ating a negatively charged carrier and extended ionic de-
fect moving with the velocity v less than the speed of
sound C0. Therefore the soliton solution correspond to the
OH− ionic defect that appear in the Bernal Fowler pic-
ture. The other soliton solution with minus sign in ϕ(x, t)
in equation (27) represents the compression of the pro-
tonic sublattice and the increase of the localized proton
density which amounts to creating a positively charged
carrier and an extended ionic defect. Therefore it corre-
sponds to the H3O+ ionic defect. Hence the solutions in
equation (27) represent the proton transfer in the ionic
defects in the intrabonds accompanied by a localized de-
formation of the heavy ionic sublattice. Contrary to the
kink soliton in hydrogen bonded chain, or in other real
physical systems which can be modelled by our system,
the solutions obtained involves about a few number of
protons only. Therefore, the present model seems to be
more realistic and applicable to a system which consist of
a small number of hydrogen bonds. Amongst others, it was
shown by Tchofo et al. [37] that, despite the fact that the
lattice discreteness of the system has some harmful effects
on the dynamics of compactons such as the existence of
the Peierls-Nabarro potential which provides pinning sites
for compactons or a linear coupling which gives rise to a
phonon band which enters in direct resonance with the in-
ternal modes of the compactons, causing radiation of en-
ergy away from the compactons, these types of solutions
have an extraordinary capacity to execute a stable ballis-
tic propagation in the system. These limiting factors are
also strongly reduced for mC2

0 	 0 and mCa 
 1. In addi-
tion, the existence of a Goldstone mode in this parameter
region makes possible a stable ballistic propagation for
compactons. It was also shown by Xia et al. [38]. In their
study of the propagation and collision of the compacton-
like kinks in the system of an anharmonic discrete lattice
with a double well one-site potential by direct algebraic
method and numerical experiments that, the localisation
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of the compactons is related to the nonlinear coupling pa-
rameter (Ca) the potential barrier height V0 of the double
well potential, the velocity of the propagation of the com-
pacton as determined by the linear coupling parameter
(mC2

0 ), the nonlinear term (mCa) and the localisation pa-
rameter. They also show by numerical experiments that
appropriate (C0) is suitable for a stable propagation of
compacton.

On the other hand, we can also calculate the total field
momentum of the kinkon(k)-antikinkon(ak) pair by

P =
1
a

∫ +∞

−∞

�

ω0

∂ϕ

∂x

∂ϕ

∂t
dx +

1
a

∫ +∞

−∞
M

∂θ

∂x

∂θ

∂t
dx, (33)

which corresponds to the usual relation between P and V
for a moving kinkon-antikinkon

P = Pk + Pak = MsolV (34)

with
Msol = m∗

k + m∗
ak, (35)

where

m∗
k =

π
√

2�ε
3
2

4a2ω0g (1 − V 2
1 )

1
2
, (36a)

m∗
ak =

√
2 (6 + π) �

2χ2ε
3
2
(
1 − V 2

1

) 1
2

2a2Mv4
0m

2ω2
0g

2 (1 − V 2
2 )2

, (36b)

are effective masses of the kinkon and antikinkon, respec-
tively, obtained after a suitable combination of the equa-
tions (21), (27) and (33). Pk and Pak which may be rewrit-
ten as

Pk = − �

ω0

v

a2

∫ +ϕ0

−ϕ0

(
∂ϕ

∂s

)
dϕ, (37a)

Pakk = −Mv

a2

∫ +ϕ0

−ϕ0

(
∂θ

∂s

)2(
∂ϕ

∂s

)−1

dϕ, (37b)

are the momentums of the kinkon and antikinkon, respec-
tively.

4 Mobility and conductivity

Next, we discuss the physical properties such as the mo-
bility and conductivity of the proton in hydrogen-bonded
systems. Since the chain is neutral in the absence of any
kind of defect in the normal case, with the occurrence of
the solitons, arising from the displacement of the proton
and distortion of the heavy ionic sublattice in the sys-
tems, a charge (q = qI + qB) deviating from the regular
protonic charge distribution occurs and thus, the solitons
are charged. qI and qB are the charge portions of
ionic and bonded defects, respectively. If the hydrogen-
bonded system is subjected to an applied external field,
we have to incorporate the energy gained by the system.
The responses of the protons and heavy ions to the force

are different [9,36] and we denote the effects of the pro-
ton and the ion sublattices by different fields F1 and F2,
respectively.
Among others, in real solids, the interaction between mov-
ing particles and other degrees of freedom of the lattice
gives rise to a mechanism for the energy loss. This mecha-
nism can be formally modeled by phenomenological damp-
ing coefficient λ1 for the proton and λ2 for the heavy ions.

Namely, the equations of motion (19) and (20) are re-
placed by the following equations

∂2ϕ

∂t2
= f1 (ϕ, θ) − λ1

∂ϕ

∂t
−
√

mω0

�

F1

m
(38a)

∂2θ

∂t2
=

f2 (ϕ, θ)
M

− λ2
∂θ

∂t
− F2

M
(38b)

where the functions f1 and f2 are defined by the relations:

f1 = 2a2ω2
0

(
∂2ϕ

∂x2

)
+

12a4Ca�

mω0

∂2ϕ

∂x2

(
∂ϕ

∂x

)2

+
4aχ

m
ϕ

(
∂θ

∂x

)
− 16V0�

m2ω0u4
0

ϕ3 +
8V0

mu2
0

ϕ (39)

f2 = Ma2v2
0

(
∂2θ

∂x2

)
− 4a�χ

mω0
ϕ

(
∂ϕ

∂x

)
(40)

respectively.
The linear mobility µ = 〈v〉

F , which describes the
steady-state mean atomic velocity 〈v〉 in response to the
dc driving force F in the limit F → 0, was consid-
ered in a number of works (e.g. see [34] and references
cited therein). In general, the mobility µ should depend
on F . As has been discussed, the total external potential
Vtot(ϕ) = Vsub(ϕ) − Fϕ is a corrugated plane, with an
average slope determined by the external force F , where
Vsub(ϕ) is a periodic substrate (one-site) potential.

The external field and damping are considered small so
that they lead only to a little change in the velocity of the
kinkon-antikinkon pair, but does not alter its waveform.
We also assume that, the forces F1 and F2 are only func-
tions of the time and considering further the boundary
conditions satisfied by ϕ(x, t) and θ(x, t), then we can ob-
tain the following equation from equations (33) and (38):

dv

dt
+ γv =

8a2g
1
2

π
√

2ε

(
1 − V 2

1

)
(

m

+
2 (6 + π)χ2

(
1 − V 2

1

)

πMv4
0g (1 − V 2

2 )2
(

mω0
�

)

)−1

F (41)

with

γ =
mλ1 +

2(6+π)χ2(1−V 2
1 )

πMv4
0g(1−V 2

2 )2(mω0
� )

λ2

m +
2(6+π)χ2(1−V 2

1 )
πMv4

0g(1−V 2
2 )2(mω0

� )

+
1

Msol

dMsol

dt

F = F1 + B
(mω0

�

) 1
2

F2

B =

√
2 (4 + π) χ

(
1 − V 2

1

) 1
2

8Mv2
0 (1 − V 2

2 ) g
1
2
(

mω0
�

) .
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Since it was shown that the velocity of the kinkon-
antikinkon pair is smaller than the sound speeds of the
two sublattices, i.e., V1 � 1, V2 � 1 [35,36], then g, ϕ0, ε
and γ are independent of time and equation (41) becomes

dv

dt
+ γ0v =

8a2g
1
2
0

π
√

2ε0

(
m

+
2 (6 + π)χ2

πMv4
0g0

(
mω0

�

)
)−1

F (42)

with

g0 =
[

16V0

mu4
0C

2
0

− 8χ1χ2

](
�

mω0

)

ε0 =
8V0

mC2
0u2

0

− 4A0χ1

γ0 =
mλ1 + 2(6+π)χ2

πMv4
0g0(mω0

� )λ2

m + 2(6+π)χ2

πMv4
0g0(mω0

� )

B0 =
√

2 (4 + π) χ

8Mv2
0g

1
2
0

(
mω0

�

) .

The electric field force F and the electric field E are re-
lated through the equation [8]

F = q∗E =
(

qk + B0

√
mω0

�
qak

)
E, (43)

where qk and qak are just the effective charges of the
kinkon and antikinkon, respectively. The differential equa-
tion equation (42) leads to the expression of the kinkon-
antikinkon pair velocity:

v (t) = v (0) e−γ0t +
8a2g

1
2
0

π
√

2ε0

[
mλ1

+
2 (6 + π)χ2

πMv4
0g0

(
mω0

�

)λ2

]−1

q∗E
(
1 − e−γ0t

)
, (44)

where v (0) is the initial speed of the kinkon-antikinkon
pair.

When t → ∞, the system is in a steady state and the
ultimate velocity of the kinkon-antikinkon pair yields

v (t → ∞) =
8a2g

1
2
0

π
√

2ε0

[
mλ1 +

2 (6 + π) χ2

πMv4
0g0

(
mω0

�

)λ2

]−1

q∗E.

(45)
In such a state, a steady current can occur.

If we define the mobility of the H30+ ion as

v = µE, (46)

where v is given by (45), the H30+ ion mobility is equal
to

µ =
8a2g

1
2
0

π
√

2ε0

qk + B0

(
mω0

�

) 1
2 qak

mλ1 + 2(6+π)χ2

πMv4
0g0( mω0

� )λ2

(mω0

�

)
. (47)

If the density n0 of the kinkon-antikinkon pair is small
enough to neglect the interaction of the kinkons, then we
obtain the expression for the conductivity caused by mi-
gration of ionic and Bjerrum defects:

σ = n0q
∗µ

= n0
8a2g

1
2
0

π
√

2ε0

[
qk + B0

(
mω0

�

) 1
2 qak

]2

mλ1 + 2(6+π)χ2

πMv4
0g0(mω0

� )λ2

(mω0

�

)
(48)

where n0 is proton numbers in an unit volume. Although
the analytical expression of mobility and electric conduc-
tivity do not depend explicitly on the parameter of anhar-
monicity Ca, they remain nevertheless implicitly related
to this one by the parameters ε and g by the relation (26).

5 Comparison with experiments

Now, we can calculate the mobility of the H30+ ion from
equation (47) and compare it with experiments on ice
crystals since experimental data on their mobility and on
the other properties required for our calculations are well
known. In ice, the H30+ ions also move by jumps of the
excess proton from one water molecular to the neighboring
molecule in the crystal. The figure describes also the ice
structure because each oxygen atom in the ice is linked by
hydrogen bonds to four other oxygen atoms in an almost
tetrahedral configuration. Only two protons are close to
one oxygen atom (besides ionic defect states). In the fig-
ure, we represent the Bernal-Fowler filament in the form
of an infinite periodic chain of water molecules produced
by means of hydrogen bonds [1]. In such chain, every wa-
ter molecule uses one proton for formation of a hydrogen
bond while the lateral proton forms with the oxygen atom
the covalent bond and does not take part in the proton
transfer along the chain.

For ice crystal, the values of the parameters, for the
temperature T = −10 oC are:
a = 2.76 Å, u0 = 0.39 Å, C0 = 1.1 × 104 ms−1,
v0 = 0.1 C0, m = mp, M = 17mp, χ = 0.15 eV Å−3,
[9,16–18,35,36], ω0 = C0√

2
, λ1 ∼ (0.6 − 0.7) × 104 s−1,

λ2 ∼ (9.1−13) × 104 s−1, q1 = 0.68e, q2 = 0.32e,
n0 = 1022 mol−1 [8,9,16–19]. Using these data we find
the mobility

µ = 5.307× 10−7 m2 V−1 s−1,

and the conductivity

σ = 6.11 × 10−4 Ω−1 m−1.

In the years (1950), some authors [21] have shown
that the mobility of the proton in the ice, is about
(0.05−0.1) × 10−4 m2 V−1 s−1. Only, the experiments of
Nagle et al. [17,19] have also shown that, this mobility is
much smaller and they have explained the difference be-
tween the above two results by a possible consideration
of the surface conduction of the protons by the other au-
thors. The currently values recorded in the literature are
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of the order of (5−10) × 10−7 m2 V−1 s−1 [21]; however,
those values remain always much higher than the mobility
of the other ions (like Li+ and F−) in the ice. The value of
the mobility, µ, which we have obtained is much smaller
than the old one and is in agreement with the experimen-
tal values of the transfer of the protons in the crystal of
ice [17,19,21,36].

6 Conclusion

In summary, we have presented a study of a nonlinear
model for the motion of defects in quasi one-dimensional
hydrogen-bonded systems with an anharmonic two sub-
lattice model. We have used the so-called kink compacton
(kinkon) to study the conductivity of the proton trans-
fer in the hydrogen-bonded systems by quantum mechan-
ical method. We found the mobility and the electrical-
conductivity of the proton transfer under an externally
applied electrical-field. The result obtained are in qualita-
tive agreement with experimental data for ice.
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